Chapter 1

SH Vernal Equinox 2017-09-22



Climate Change, Ozone Holes, and Magnetic Poles

“An Investigation Reexamining Brewer-Dobson Ozone Theory to Uncover the Atmospheric Role of Paramagnetic Oxygen in Recent Extreme Weather Patterns and Global Climate Change” by Harry Todd


A previously undiscovered relationship exists between tropospheric oxygen and the wandering magnetic poles of Earth’s core.  All oxygen is paramagnetic, the colder the better.  In the southern hemisphere the Ozone Hole boundary is being held open by the eccentric South Magnetic Pole, and Antarctic sea ice  expands to match that latitude.  In spite of the curtailment of CFCs under the Montreal Protocol, the Ozone Hole has not shrunk in three decades.  In the northern hemisphere rampant carbon dioxide warming is being stirred by elongated jet stream loops melting ancient Arctic sea ice with subtropical air masses.  Comparison of daily satellite maps of total ozone to maps of jet stream velocity show a close physical relationship.  The old standard Brewer-Dobson equatorial ozone migration theory is inadequate for modeling the factors involved in actual documented stratospheric ozone generation.

A new thesis is proposed for stratospheric ozone formed in situ at higher latitudes.  It is based upon tropospheric transport of paramagnetic oxygen to a lower-altitude polar tropopause.  Data obtained from internet sources show maps of high-latitude ozone conversion associated with polar magnetic force fields and also show detailed cross sections of mid-latitude ozone conversion associated with jet streams.  Tropopause ozone conversion accelerates the jet streams and elongates the Rossby wave loops, exacerbating extreme weather patterns.  The data confirm the thesis.  The paramagnetic process responds to wandering magnetic poles, and new climate change models need to incorporate this rapidly moving global effect.  The process might even explain the cycles of Pleistocene glaciation.

Wandering magnetic poles control cold oxygen which controls ozone conversion which controls jet stream velocity which controls Rossby wave loops which control the weather.  Therefore, wandering magnetic poles control the weather!

AUTHOR’S NOTE: Carbon dioxide, methane, CFCs, HFCs, and nitrogen compounds are the main focus of international attempts to lessen the chemical effects of anthropogenic global warming caused by greenhouse gas pollution.  The efforts of the Paris Agreement are very important if we are to slow down that process.  We must recognize however, that non-anthropogenic geophysical forcing factors also are active in climate change, and that we have no control over them.  We may need to double our pollution control in order to offset the non-anthropogenic factors.  Carbon is something we CAN CONTROL.

This website is dedicated to exploring oxygen’s involvement in climate patterns associated with Earth’s wandering magnetic poles.  Using ozone as a tracer, it develops a new rationale for climate modeling.  The conclusions are a radical departure from currently accepted science.  This is new science.  Hopefully it is correct.  The paper is complex.  The rationale is difficult to follow, and the graphics need careful study.  The presentation is best viewed on a desktop monitor.  Each chapter expands for further reading by CLICKING THE GREEN LINK.  Scientific standards have been maintained in the thesis development, but the style is casual.  It is a continuing work in progress, and random editing occurs.  The original was published by WordPress on October 28, 2015.  It has no political nor economic agenda.  The paper has been professionally edited but will not be submitted to a peer-reviewed atmospheric journal in this form.

Explore the possibilities!


Introduction, Traditional Ozone Science

Why would we need yet another ozone paper? Are not the industrialized nations responsible for the chemical degradation of the atmosphere and the rapidly warming global climate? Have we not determined the processes and merely need to control our excesses?  But why has the Ozone Hole not repaired itself after we eliminated hair spray?  And why is the northern hemisphere experiencing such extreme weather patterns?

For traditional background information, a thorough secondary source of stratospheric ozone theory is available on the internet at The Stratospheric Ozone Electronic Textbook [1], compiled by members of NASA’s Goddard Space Flight Center Atmospheric Chemistry and Dynamics Branch (Code 916), although paramagnetic oxygen is not addressed.

The original theory of stratospheric ozone generation was published in the Memoirs of the Royal Meteorological Society by mathematician Sydney Chapman in 1930 [2]. Chapman described the reversible conversion of oxygen into ozone by solar ultraviolet radiation, the Chapman Cycle.  In 1946 British physicists Alan Brewer and Gordon Dobson [3] devised a model of very slow, convective, stratospheric ozone transport from the equator to the poles (Fig 1), explaining why more ozone is found in polar regions than near the equator where more solar radiation occurs.

Brewer-Dobson theory of ozone circulation
Fig 1. Schematic illustration of Brewer-Dobson circulation theory.  This is a model.

With seasonally averaged ozone density by NASA, The Stratospheric Ozone Electronic Textbook, Chapter 6, Section 3, Figure 6.03. Available.

That is NOT how it works!


Seventeen years after the Ozone Hole was discovered, NASA Science News reported “Peering into the Ozone Hole” (Fig 2) asking a serious question [5]: “Image of the record-size ozone hole taken by NASA satellites on September 9, 2000. Blue denotes low ozone concentrations and yellow and red denote higher levels of ozone. Notice the ‘croissant’ of high ozone concentrations formed when the Antarctic vortex blocks the southerly migration of ozone formed in the tropics . . . Why are we seeing the worst-ever ozone hole when 13 years of regulation are finally bringing CFC levels under control? . . . Most stratospheric ozone is created in the tropics, because the intensity of the solar radiation that causes formation of ozone is higher nearer the equator. The ozone is then transported by stratospheric air currents to the Arctic and to Antarctica.”  (Italics added.)

ozone hole 2000 ozone croissant
Fig 2. Record ozone hole taken by NASA satellite on September 9, 2000

After 13 years of regulation by the Montreal Protocol, the ozone minimum was larger than ever. NASA still is using Brewer-Dobson theories for ozone modeling. “Ozone Croissant” label was added to the published satellite map. Available.


The influence of traditional Brewer-Dobson theories prevails in that 2000 NASA report and in scientific practice today [1]. Repeating NASA’s question, “Why are we seeing the worst-ever ozone hole when 13 years of regulation are finally bringing CFC levels under control?” Is that question a problem?  It is applicable to 2015 data displaying a similar sized ozone hole.  Could the answer merely be a delay in the results of our remedial efforts?  Or are we overlooking a significant factor?



Chapter 6

Relating Extreme Weather to Wandering Magnetic Poles

Responding to wandering magnetic poles, these stratospheric events (Figs 26 & 27) affect the troposphere in which human lives encounter extreme weather. Compare these satellite maps to human activity on one of those extreme days, February 15, 2015, illustrating how intimately related are humans and the stratosphere (Figs 28, 29, 30 & 31).

boston blizzard news article 2015 reuters
Fig 28. Photograph from the snowiest month in Boston’s history. Boston, MA, February 15, 2015, credit Reuters/Brian Snyder.

Continue reading “Chapter 6”