Chapter 3

The South Magnetic Pole wandered off the continental shelf!

Unheralded by the scientific press, the South Magnetic Pole had wandered off the Antarctic continental shelf in 1983 (Fig 8).

magnetic pole wandered off antarctic continental shelf 1983
Fig 8. Historic track of wandering South Magnetic Pole. Magnetic pole wandered off the Antarctic continental shelf in 1983 into the peripheral polar vortex of extreme weather. NOAA data. 1983 label added. Available URL http://www.ngdc.noaa.gov/geomag/image/south_dip_poles.png

Continue reading “Chapter 3”

Chapter 7

Results

Why is more ozone found in polar regions than near the equator where more solar radiation occurs? Reexamination of the Brewer-Dobson solution (Fig 1) to that question has resulted in a differing conclusion:

  • Brewer-Dobson equatorial ozone generation and stratospheric transport does not explain the complexities shown by actual satellite mapping.
  • Thesis investigation uncovered a previously unrecognized climate forcing factor, paramagnetic oxygen, in a natural geophysical/atmospheric interaction.
  • The Paramagnetic Oxygen Transport Thesis outlined the process by using ozone as a tracer.  The thesis explains a global relationship between oxygen, ozone, and magnetic poles.
  • In cold weather oxygen migrates toward Earth’s magnetic poles and gains paramagnetic susceptibility as the temperature decreases.
  • At mid-latitude tropopause folds and breaks, tropospheric oxygen converts to stratospheric ozone associated with jet streams.  The exothermic conversion energizes the jet stream, increasing its velocity and forcing Rossby wave loops to meander widely.  In the northern hemisphere the loops extend from 30 to 90 degrees latitude, causing extreme weather events and pulling warm air across Arctic sea ice.
  • At high latitudes, paramagnetic oxygen is attracted to magnetic force fields between Antarctica and Australia and between Canada and Siberia.  In the southern hemisphere the eccentric South Magnetic Pole attracts paramagnetic oxygen away from the rotational South Pole leaving an Oxygen Hole.  CFCs collect on nacreous Polar Stratospheric Clouds and strip any remaining ozone.  The resulting Ozone Hole is frigid and expands the Antarctic sea ice out to the latitude of the South Magnetic Pole.
  • The original Ozone Hole was discovered in 1983, the year that the wandering South Magnetic Pole moved off the Antarctic continental shelf.  The pole continues moving northwestward at 10-15 km. per year.  The North Magnetic Pole lies close to the rotational North Pole but it is wandering toward Siberia at 55-60 km. per year.  This rapid movement started two decades ago when the magnetic pole wandered off the Canadian continental shelf.  It coincides with extreme weather in the northern hemisphere.
  • All this interlocking evidence offers compelling proof that the Paramagnetic Oxygen Transport Thesis explains the process involved in a previously undiscovered geophysical forcing factor in global climate change.  Earth’s wandering magnetic poles force global climate change.
  • If the North Magnetic Pole continues wandering fairly rapidly into Siberia, it might set up a northern ozone hole by attenuating the Rossby waves over the continental land masses rimming the Arctic Ocean.  This might initiate another glacial episode of the Pleistocene variety.  Paramagnetic oxygen and wandering magnetic poles could be the periodic mechanism that has driven the ice ages.

  • Indeed, the five major glaciations on Earth have occurred since the Great Oxygenation Event 2.3 billion years ago.  The Huronian snow ball lasted from 2400 mya until 2100 mya.  The Cryogenian deep freeze was 850 mya to 635 mya.  Pangea was engulfed in ice during the Andean-Saharan 450 mya to 420 mya.  Major glaciation occurred during the Karoo 360 mya until 260 mya.  And finally our current Quaternary glaciation began a brief 2.58 mya.  The recent melting may be the climax of an interglacial period and the resumption of the Ice Age.  Paramagnetic oxygen has been influenced by wandering magnetic poles for 2300 million years.

Wandering magnetic poles control cold oxygen which controls ozone conversion which controls jet stream velocity which controls Rossby wave loops which control the weather.  Therefore, wandering magnetic poles control the weather.

Continue reading “Chapter 7”